Validation of a Biomarker That Could Identify a Subset of Frontotemporal Dementia and Alzheimer's Disease Patients
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$200,000
Active Dates
September 01, 2020 - August 31, 2022
Grant ID
A2020279F
Goals
Currently the medical field lacks reliable biomarkers to identify a subset of Frontotemporal Dementia and Alzheimer’s disease patients with a particular type of pathology in the brain, accumulation of aggregated TAR DNA binding protein (TDP-43). The production of a new molecule, truncated stathmin 2, arising from TDP-43 aggregation, may be a way to indirectly assess TDP-43 pathology. We propose to develop tools to determine if there is an increased amount of truncated stathmin 2 in spinal fluid from AD and FTD patients compared to controls. These findings have the potential to help separate patients who would benefit from particular therapies in upcoming clinical trials.
Summary
The overall goal of this project is to find a biomarker that will identify a subset of people with Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) that have a pathological accumulation of TAR DNA-binding protein (TDP-43) in their brains. To date, attempts to directly measure pathological TDP-43 in patient samples have been unsuccessful. Therefore, we propose to measure the production of truncated stathmin 2 (STMN2), as a surrogate marker for TDP-43. Truncated STMN2 is produced as a result of the inability of TDP-43 to function properly due to its incorporation into pathological aggregates. First, we will determine if the production of truncated STMN2 in the brain is specific to AD and FTD patients with TDP-43 aggregation and not healthy individuals. We will also investigate the prognostic value of truncated STMN2 by evaluating if elevated levels are correlated with age of disease onset and disease progression. Our next aim is to develop the tools needed to detect truncated STMN2 at both the RNA and protein level in blood and cerebrospinal fluid. We anticipate that the levels of truncated STMN2 will be able to discriminate patients with TDP-43 aggregation from healthy individuals and patients with other types of pathology. Our overall goal is to validate truncated STMN2 as a biomarker for AD and FTD with TDP-43 pathology and develop diagnostic tools for its detection in patients. With these methods in place we can identify which patients would be most likely to benefit from emerging therapies.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Alzheimer's Disease Research
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD