Understanding Brain Networks Causing Associative Memory Impairments in AD
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$200,000
Active Dates
July 01, 2022 - June 30, 2025
Grant ID
A2022018F
Goals
We will identify target neural circuits and cells that will slow or mitigate the progression of associative memory impairments in AD.
Summary
Alzheimer’s disease (AD) affects 6 million people in the US, but no cure exists. Although molecular and cellular mechanisms of AD become clearer, it is still unclear what type of neuronal brain activity is lost in AD. If we understand this, we may be able to develop a therapy to prevent memory loss in AD patients. In this project, we will identify the underlying causes of brain cell dysfunction, and test if artificial reactivation of brain cell activity restores associative memory in AD mice. These studies are expected to lead to a new method for restoring memory in AD patients.
Unique and Innovative
We are one of the only few labs studying circuit mechanisms underlying associative memory in the lateral entorhinal cortex, and presumably the first lab that focuses on the associative memory impairment in AD. Our lab has all experimental setups for the proposed in vivo electrophysiological recording and an associative learning behavioral paradigm. The proposed study represents high innovation because these systems neuroscience-oriented methods have not been applied in the AD research field.
Foreseeable Benefits
My research will help us identify target neural circuits to prevent progression of AD and to slow or mitigate the progression of associative memory impairments in AD patients. Our results may also lead to the future development of effective circuit-based therapeutics applicable to preserve or improve memory function in AD patients, including brain reactivation using deep-brain stimulation.
Grants
Related Grants
Alzheimer's Disease Research
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Alzheimer's Disease Research
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Alzheimer's Disease Research
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD