Prion Protein Antagonists for Alzheimer’s Therapy
About the Research Project
Program
Award Type
Standard
Award Amount
$250,000
Active Dates
July 01, 2013 - June 30, 2016
Grant ID
A2013184S
Goals
In Alzheimer’s disease (AD), chemical connections (synapses) between neurons are damaged and cognition is impaired. Dr. Strittmatter’s team has found that beta-amyloid (Abeta) binds to prion protein at synapses to trigger this process. Here, the team seeks to discover and validate drugs that protect prion protein from Abeta and thereby prevent the initiation of AD malfunction.
Summary
When this study is complete, Dr. Strittmatter’s team will have determined whether drugs blocking prion protein have potential use as a therapy for Alzheimer’s disease (AD). In AD, the beta-amyloid (Abeta) protein builds up. Specific collections of Abeta, termed oligomers, damage neurons and cause memory loss. To attack nerve cells, Abeta first binds to prion protein on the cell surface. The team seeks to identify and optimize drug-like compounds that prevent Abeta from binding to prion protein. Then, they will test if these compounds can reverse memory loss in mouse models of AD. If so, these compounds will be starting points for testing in the clinic to preserve memory function in AD.
Many drug trials have tried to alter the level of Abeta, but Dr. Strittmatter’s team’s approach is unique in that they seek to prevent the toxic effect of Abeta to nerve cells. The team believes that this distinction provides the opportunity for greater effects than the approaches now being tested in the clinic that focus on the amount of Abeta.
At the end of the proposed work, Dr. Strittmatter will have determined whether drug-like compounds can target the Abeta interaction with prion protein and whether this reverses memory loss in animal models of Alzheimer’s disease. Positive results in these experiments will set the stage for a full clinical drug development effort targeting prion protein for AD therapy.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD