Identifying Therapeutic Targets and Biomarkers to Facilitate a Meaningful Therapy and a Pre-Symptomatic Disease Diagnostic
About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
September 01, 2020 - August 31, 2024
Grant ID
A2020161S
Goals
Many genes are known to be involved in Alzheimer’s disease, but exactly how they are involved is unclear. We hope to identify DNA and RNA changes that drive Alzheimer’s disease development and progression.
Summary
Like many Alzheimer’s disease researchers, one of our long-term goals is to help develop a meaningful therapeutic to treat disease. What is not commonly emphasized, however, is the importance of developing pre-symptomatic diagnostic for Alzheimer’s disease (AD)—because once symptoms onset, it’s too late to provide the best treatment; the individual has already lost vital brain function affecting precious memories and other essential functions. As such, our second long-term goal is to develop a pre-symptomatic disease diagnostic. To accomplish our goals, we seek to identify specific DNA and RNA modifications that are directly driving Alzheimer’s disease because most genes involved in disease are only implicated through basic statistical associations. In other words, we still lack specific molecular mechanisms to target for treatment and diagnostics. Our aims are a focused approach to identify specific mechanisms involved in disease development and progression. Specifically, we are employing cutting-edge DNA and RNA sequencing approaches that will enable us to identify an entirely different class of DNA mutations, known as structural mutations, that are known to drive many neurodegenerative diseases. Structural DNA mutations are generally overlooked using standard sequencing approaches, but we have already identified potentially important mutations using long-range approaches. Likewise, these approaches are making it possible to understand top Alzheimer’s disease genes at an entirely new level. On average, the top Alzheimer’s disease genes code for approximately 12 different proteins. Historically, and for practical reasons, studies have been forced to treat all of these proteins for a given gene as a single entity, which is a major oversimplification of the underlying biology. We are now able to individually measure levels for these different protein-encoding RNA isoforms to determine which ones are actually involved in disease. The opportunities afforded by our BrightFocus award will make it possible to identify specific molecular mechanisms that we can target for both therapeutics and for a pre-symptomatic disease diagnostic.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD