ADAM10 Regulates Adult Hippocampal Neurogenesis
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$100,000
Active Dates
July 01, 2013 - June 30, 2015
Grant ID
A2013140F
Goals
Alzheimer’s disease (AD) destroys brain cells, causing memory loss and problems with thinking and behavior severe enough to affect work, lifelong hobbies, and social life. New neurons are born in the adult brain (called “adult neurogenesis”) and this process is impaired in AD, suggesting that impaired cognitive function in AD might, at least, in part, be due to impaired neurogenesis in the adult brain. ADAM10 is a protein that plays an important role in AD, as it prevents the generation of a toxic protein that causes AD. Dr. Choi’s team hypothesizes that ADAM10 also plays critical roles in adult neurogenesis, and they propose various animal and cell culture experiments to validate their hypothesis.
Summary
Alzheimer’s disease (AD) is the most common form of dementia among older people. The disease destroys brain cells, causing memory loss and problems with thinking and behavior severe enough to affect work, lifelong hobbies, and social life. AD gets worse over time, and is fatal. The most popular therapeutic approach has been to inhibit neurodegeneration, but as yet there are no treatments that can stop the disease today.
Adult brain contains discrete populations of stem cells that retain the capacity to generate new neurons through the process of adult neurogenesis. Neurogenesis in the adult brain plays a critical role in learning and memory, adaptation to novel environments, and injury or disease. Recent evidence shows that rate of adult neurogenesis declines in various, early-onset, AD models, raising the possibility that reduced neurogenesis may account, at least in part, for impaired learning and memory and cognitive deterioration in AD. However, most AD cases are late-onset and no study has been reported to examine the effect of mutations found in late-onset AD on adult neurogenesis. We aim to investigate whether late-onset AD-associated ADAM10 mutants affect adult hippocampal neurogenesis.
We already generated transgenic mice expressing human wild-type ADAM10 or ADAM10 mutations that are associated with late-onset AD. First, we aim to investigate whether wild-type and/or ADAM10 mutations affect adult neurogenesis in our transgenic mouse models. Secondly, we will find mechanism(s) by how ADAM10 regulates adult neurogenesis using cell culture systems. Third, we will assess cognitive function to study the functional outcome of altered neurogenesis in the ADAM10 mice. Finally, we will also investigate whether increasing neurogenesis could be a therapeutic target in a mouse model of AD.
Since the hippocampus plays a central role in processing new memories and is severely affected in AD, better understanding of the ADAM10 regulators of neurogenesis will highlight the opportunities for enhancing the expression and/or activity of the ADAM10 as a therapeutic target by manipulating neurogenesis in the brain.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Alzheimer's Disease Research
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD