Using Electric Fields to Regenerate the Optic Nerve
Principal Investigator
Kimberly Gokoffski, MD, PhD
University of Southern California
Los Angeles, CA, USA
About the Research Project
Program
Award Type
Standard
Award Amount
$190,000
Active Dates
September 01, 2020 - August 31, 2023
Grant ID
G2020331
Acknowledgement
Goals
It is estimated that 18 million people worldwide are legally blind from glaucoma, a disease that damages the optic nerve, the cable that connects the eye to the brain. Blindness in patients with glaucoma is currently irreversible because the cells that make up the optic nerve, retinal neurons, are not able to regenerate. Although scientists have been able to use stem cells produce new healthy neurons, when these neurons are injected into the eye, they are unable to form new connections with the brain. This project employs an innovative technology that uses electrical stimulation to direct neuron growth so that healthy neurons that have been injected into diseased eyes may form new connections with the brain and thereby restore vision.
Summary
The goal of our research is to develop a technology to help damaged retinal ganglion cells (RGCs) regrow their long tails (axons) and re-establish connections with the brain. In glaucoma, RGCs sustain damage to their axons which causes them to retract and eventually leads to degeneration of the neuron itself. Technologies that can 1) direct native RGCs to regrow their axons and/or 2) direct the formation and growth of axons in transplanted RGCs are needed to restore vision in patients blinded by glaucoma. Building on our previous work, we will transform electric field application into a viable technology to direct regrowth of injured RGC axons. We have previously shown that electric fields (EFs) promote retinal ganglion cell (RGC) axon growth in tissue culture. Here, we plan to translate our previous work and develop EF application as a breakthrough therapy to regenerate RGC axons in vivo. In addition, we propose to use genetic approaches to manipulate RGC cellular machinery and evaluate potential synergistic effects on promoting axon regeneration when applied in conjunction with EFs. This technology would be the first device shown to be effective at regenerating the optic nerve after it has been damaged. Once completed, this work will be pivotal in propelling the development of a device that can help restore vision in patients blinded by advanced glaucoma.
Grants
Related Grants
National Glaucoma Research
Why Certain Retina Ganglion Cells Stay Strong in Glaucoma
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Mengya Zhao, PhD
Why Certain Retina Ganglion Cells Stay Strong in Glaucoma
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Mengya Zhao, PhD
National Glaucoma Research
Pressure-Induced Axon Damage and Its Link to Glaucoma-Related Vision Loss
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Bingrui Wang, PhD
Pressure-Induced Axon Damage and Its Link to Glaucoma-Related Vision Loss
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Bingrui Wang, PhD
National Glaucoma Research
Boosting Neuronal Energy to Improve Vision in Glaucoma
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Adriana Di Polo, PhD
Boosting Neuronal Energy to Improve Vision in Glaucoma
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Adriana Di Polo, PhD