Background alzheimers Shape Background alzheimers Shape Background alzheimers Shape
Grants > The APP/FE65 Complex in Regulating Neurite Outgrowth Updated On: Ene. 19, 2025
Alzheimer's Disease Research Grant

The APP/FE65 Complex in Regulating Neurite Outgrowth

BFF logo

Principal Investigator

Annat Ikin, PhD

Thomas Jefferson University

Philadelphia, PA, USA

About the Research Project

Program

Alzheimer's Disease Research

Award Type

Standard

Award Amount

$100,000

Active Dates

April 01, 2004 - September 30, 2006

Grant ID

A2004255

Summary

Alzheimer’s disease (AD) is believed to be caused by the excess accumulation of amyloid beta (Aß) in the brain. It is well known that Aß is derived through the processing of a larger molecule, the amyloid precursor protein (APP). Determining the function of APP will further an understanding of the pathological events leading to AD and should help to identify therapeutic targets that do not disrupt normal brain functions. Dr. Ikin believes that proteins that bind to APP could potentially modify its function. One such protein is the cytosolic adapter FE65. Dr. Ikin has already shown that APP and FE65 both localize in a region of neuronal growth cones along with mena, which regulates membrane motility and is required for normal neural development. This suggests that a constellation of factors involving APP and FE65 may play a role in growth cone motility. In this project, Dr. Ikin is testing the hypothesis that APP, FE65, and one or more additional proteins form a complex involved in the regulation of growth cone movement and neurite outgrowth. The function of this complex may have direct implications for AD, since the loss of neural connections and neuronal sprouting are prominent features of Alzheimer’s disease pathology.