Peptide Imaging Agents Specific for Tau Aggregates
About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
September 01, 2017 - August 31, 2021
Grant ID
A2017395S
Co-Principal Investigator(s)
Brian Ross, The Regents of the University of Michigan
Henry Paulson, MD, PhD, University of Michigan
Goals
Alzheimer’s disease (AD) is linked to proteins that misbehave and stick together into protein particles that are toxic to brain cells. Early detection of this dreaded disease requires the generation of imaging molecules that can enter the brain and selectively tag the toxic protein particles in different parts of the brain. We aim to use an innovative design and evolution method for generating imaging probes specific for particles of one of the most harmful Alzheimer’s proteins (tau). We will use these novel probes to image toxic tau protein particles in the brains of mice used as models of AD, with the long-term goal of translating this technology to humans for early and accurate disease detection.
Summary
As the first step of our investigation, we will generate small probes that recognize different forms of tau protein aggregates. Our approach is to use a small and stable scaffold that will be mutated to generate large libraries of variants with sequence differences in the binding loops. We will introduce different functional groups (amino acids) at several sites in the binding loops that have a wide range of properties, including amino acids with positive and negative charge as well as those with hydrophobic (water hating) or hydrophilic (water loving) groups. Next, we will use high-throughput screening methods to sort these large libraries in order to select rare variants (ie, the “needles in the haystack”) that selectively recognize toxic forms of the tau protein that are associated with Alzheimer’s disease (AD). Finally, we will evaluate these novel probes as imaging agents for detecting toxic tau protein particles in the brains of mice used as models of AD. Our long-term goal is to translate this technology to humans for early and accurate detection of Alzheimer’s disease.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD