New Method to Assess ApoE and Abeta Metabolism
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$100,000
Active Dates
April 01, 2007 - March 31, 2009
Grant ID
A2007620
Mentor(s)
David Holtzman, Washington University School of Medicine in St. Louis
Goals
The hypothesis being tested is that different human apoE isoforms and lipidation states of apoE alters apoE and Abeta clearance in the CNS. We further hypothesize that the perturbation in regulation of apoE metabolism will then influence Abeta metabolism and will alter both the time course and amount of Abeta depostion in brain. Results from these experiments may provide insights into normal apoE metabolism in the CNS as well as clarify why APOE isoform genotype influences risk for AD.
Summary
Alzheimer’s disease (AD) is the most common cause of dementia. Mutations in specific genes (APP, PSEN1, and PSEN2) cause rare forms of familial AD. While these mutations have been very useful, >99% of AD (late-onset) does not appear to be due to these mutations. Defects in clearance of Abeta from brain could underline many cases of sporadic AD. There is only one proven genetic risk factor for both early and late-onset AD, one’s APOE genotype. ApoE4 is associated with an increased risk and apoE2 is associated with a decreased risk for AD. A large amount of evidence suggests that apoE is likely to influence risk for AD by acting as a molecular chaperone for Abeta and influencing Abeta fibrillogenesis and clearance. The hypothesis being tested is that different human apoE isoforms and lipidation states of apoE alters apoE and Abeta clearance in the CNS. We further hypothesize that the perturbation in regulation of apoE metabolism will then influence Abeta metabolism and will alter both the time course and amount of Abeta depostion in brain. Results from these experiments may provide insights into normal apoE metabolism in the CNS as well as clarify why APOE isoform genotype influences risk for AD.
Grants
Related Grants
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Alzheimer's Disease Research
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD
Alzheimer's Disease Research
Advancing the Promising Cerebroprotectant AST-004 to Human Clinical Trials
Active Dates
July 02, 2021 - June 30, 2024
Principal Investigator
William Korinek, PhD
Advancing the Promising Cerebroprotectant AST-004 to Human Clinical Trials
Active Dates
July 02, 2021 - June 30, 2024
Principal Investigator
William Korinek, PhD