New Glaucoma Models Mined From an Inbred Genetic Reference Panel
Principal Investigator
Monica Jablonski, PhD
The University of Tennessee Health Science Center
Memphis, TN, USA
About the Research Project
Program
Award Type
Standard
Award Amount
$150,000
Active Dates
July 01, 2018 - June 30, 2022
Grant ID
G2018116
Goals
Millions of people are affected by glaucoma and some lose their vision due to this disease. To develop new drugs to treat glaucoma or to understand why glaucoma causes vision loss, it is important to have accurate models of the disease. Unfortunately, there are not enough models available that truly reflect the human disease. We hope to change that. In our study, we will identify and characterize new glaucoma models that share the disease phenotypes of humans. These models will be a very useful resource for all vision scientists.
Summary
Glaucoma is the second leading cause of blindness in the world. Our chances of losing vision to this disease markedly increase as we age and if we have relatives that have glaucoma. Despite its prevalence, we don’t fully understand what causes glaucoma, why some people lose their vision faster than others, and how we can stop the progression of vision loss. In our BrightFocus-funded study, we will identify and characterize strains of mice within the BXD genetic reference panel that mimic primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG), normal tension glaucoma (NTG) and ocular hypertension. Our overall goal is to meet the urgent need for new, rigorously characterized and reproducible mouse glaucoma models that appropriately reflect the variety of glaucoma subtypes recognized in the human population. Any glaucoma model that we identify is spontaneous and is due to the particular set of polymorphisms in the genome of each individual strain, similar to the human condition. Moreover, the phenotype of each strain is highly reproducible and the supply of mice from each strain is unlimited. These models can be used by multiple investigators to identify disease mechanisms and/or evaluate new glaucoma therapies.
Grants
Related Grants
National Glaucoma Research
Understanding How Variants in LOXL1 Affect Pseudoexfoliation Glaucoma Risk
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Hannah Youngblood, PhD
Understanding How Variants in LOXL1 Affect Pseudoexfoliation Glaucoma Risk
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Hannah Youngblood, PhD
National Glaucoma Research
Defining the Role of a New Protein Target in Fluid Buildup in Glaucoma
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Rupalatha Maddala, PhD
Defining the Role of a New Protein Target in Fluid Buildup in Glaucoma
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Rupalatha Maddala, PhD
National Glaucoma Research
A Possible Connection Between Glaucoma and Alzheimer's Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Nick Marsh-Armstrong, PhD
A Possible Connection Between Glaucoma and Alzheimer's Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Nick Marsh-Armstrong, PhD