Mechanisms of MAPT Regulation
Principal Investigator
Jesse Cochran, PhD
HudsonAlpha Institute for Biotechnology
Huntsville, AL, USA
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$199,896
Active Dates
July 01, 2019 - June 30, 2021
Grant ID
A2019129F
Mentor(s)
Richard Myers, PhD, HudsonAlpha Institute for Biotechnology
Goals
We would like to find out how an Important Gene for Alzheimer’s disease called MAPT is turned on in neurons, the cells in your brain that control your thinking. This important gene MAPT is the instruction set for a protein called tau. Tau causes problems in Alzheimer’s disease, and scientists think that reducing tau might be helpful as a treatment. If we can figure out how MAPT is turned on in neurons, it might help us know how we could turn it off, which would reduce tau and might help people with Alzheimer’s disease.
Summary
I am working towards understanding how an important gene for Alzheimer’s called MAPT (which is the instruction set for a protein called tau) is turned on in neurons, the cells in your brain that control your thinking.
The first critical thing to know to understand how a gene is turned on is to figure out what interacting elements makes physical contact with the main on switch (called the “promoter”) for that gene. Interacting elements can be either proteins (called “transcription factors”) or stretches of DNA that can help transcription factors bind (called “enhancers”). Knowing the enhancers that interact with the promoter can help us understand what transcription factors are close to the promoter, so I will first measure what stretches of DNA are physically interacting with the promoter of MAPT, which would make these stretches of DNA candidate enhancers. The next step for understanding if these candidate enhancers help turn tau on is to test, individually, the effect of each of these candidate enhancers on how much tau is produced. I will test this both by testing how much expression-inducing activity each candidate enhancer has when tested in an isolated setting, and by testing the effect of blocking the function of the candidate enhancers on tau expression directly.
By performing these experiments in different types of neurons, where tau is highly expressed, and performing the same experiments in precursor cells that are a lot like neurons, but are not fully mature and do not express much tau, I will be able to get a clear picture of what signals are clearly associated with tau expression by checking for signals that are present in neurons (where tau is highly expressed), but not in precursor cells (where tau is barely expressed). Furthermore, analyzing the very specific data collected here along with other types of more general data that we already have collected on signals associated with expression near MAPT will lead to a much better understanding of how MAPT is turned on in neurons.
Understanding how MAPT is turned on to produce tau is important because tau causes problems in Alzheimer’s disease, and scientists think that reducing tau might be helpful as a treatment. If we can figure out how MAPT is turned on in neurons, it might help us know how we could turn it off, which would reduce tau and might help people with Alzheimer’s disease.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Alzheimer's Disease Research
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD
Mitochondrial Prodrug to Treat Repeated Mild Traumatic Brain Injury
Active Dates
September 08, 2021 - December 31, 2023
Principal Investigator
Patrick Sullivan, PhD