Window to Health: New Ways to Detect the First Signs of Cell Sickness in the Eye
About the Research Project
Program
Award Type
Standard
Award Amount
$160,000
Active Dates
July 01, 2015 - June 30, 2018
Grant ID
M2015379
Acknowledgement
Goals
Blindness is commonly caused by the death and disappearance of light-sensing cells in the retina. One big-picture goal of our research is to identify cells in distress and to heal them before they die and before patients lose their sight. Because doctors have the ability to look inside the eye as part of routine exams, our research is developing new ways to image cells in the living eye, providing a new “window to health,” with the ultimate goal to delay or prevent blindness through early detection.
Summary
The first part of vision begins in the photoreceptors of the retina, which transduce photons of light into electrical signals. Our lab examines the biochemical and biophysical properties of signaling in photoreceptors, as well as the consequences of defective signaling on visual performance.
We are also trying to understand why and how photoreceptors die, which is the leading cause of blindness in humans. Photoreceptor degeneration, like all neurodegenerative diseases, leads to microglial activation and neuroinflammation. We are investigating the regulation of neuroinflammation, its relationship to neovascularization, and its helpful vs harmful consequences for preserving neuronal and synaptic function.
A common early indication of neuronal stress and degeneration is activation of microglia, which can proliferate, migrate towards, and phagocytose (ie, engulf and ingest) injured neurons; and they also recruit circulating macrophages to escalate inflammation. Such escalation of inflammation appears to contribute to the progression of age-related macular degeneration (AMD) since AMD is associated with a polymorphism of complement Factor H and drusen are associated with immune complexes and subretinal accumulation of activated microglia and macrophages. The causality and sequence of the escalation of the immune response is unclear. We are developing novel ways to measure inflammation during retinal degeneration (Aim 1) and to assess the consequences of therapeutics on microglial and macrophage dynamics and the rate of degeneration in vivo (Aim 2). The ultimate goal of the work is to be able to delay or prevent photoreceptor degeneration in AMD through manipulation of the early immune response.
Grants
Related Grants
Macular Degeneration Research
Exosomes and Autophagy: Suspicious Partners in Drusen Biogenesis and AMD
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Miguel Flores Bellver, PhD
Exosomes and Autophagy: Suspicious Partners in Drusen Biogenesis and AMD
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Miguel Flores Bellver, PhD
Macular Degeneration Research
The Novel Role of an Intracellular Nuclear Receptor in AMD Pathogenesis
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Neetu Kushwah, PhD
The Novel Role of an Intracellular Nuclear Receptor in AMD Pathogenesis
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Neetu Kushwah, PhD
Macular Degeneration Research
Tracking How Rare Eye Immune Cells Respond to Damage in Age-Related Macular Degeneration
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Abdelilah Majdoubi, PhD
Tracking How Rare Eye Immune Cells Respond to Damage in Age-Related Macular Degeneration
Active Dates
July 01, 2023 - June 30, 2025
Principal Investigator
Abdelilah Majdoubi, PhD