Building a Personalized Virtual Brain with Alzheimer’s to Guide Clinical Decisions
Principal Investigator
Randy Mcintosh, PhD
SFU Institute for Neuroscience and Neurotechnology
Burnaby, British Columbia, Canada
About the Research Project
Program
Award Type
Standard
Award Amount
$299,565
Active Dates
July 01, 2017 - December 30, 2020
Grant ID
A2017286S
Co-Principal Investigator(s)
Kelly Shen, PhD, Rotman Research Institute
Goals
The brain is a complicated system whose different parts interact to support a variety of cognitive functions. This complexity makes it difficult to treat diseases such as Alzheimer’s and Parkinson’s, where many different brain areas can be affected, but lead to very similar deficits, such as memory dysfunction. Our research provides a framework of tools to “reconstruct” the brain and build models of different dementias to characterize the unique features of each disease and the final common paths to cognitive impairment. As our work progresses, it will be used to evaluate the potential of therapeutic interventions to help identify treatment targets, or areas of the brain that, if treated, are most likely to result in the best outcome for the individual.
Summary
This research project is leading us towards a personalized medicine approach to understanding, preventing and treating brain disorders, specifically Alzheimer’s disease (AD) and Parkinson’s disease (PD), using a network dynamics approach via TheVirtualBrain.
With this grant from BrightFocus Foundation, we are characterizing commonalities and differences in brain network dynamics across AD & PD and mapping the underlying biophysical substrates to individual clinical profiles using TheVirtualBrain (TVB). TVB is a robust brain modeling platform that allows us to simulate network dynamics safely in a virtual environment, in contrast to traditional clinical trials or direct patient testing. The first aim directly tests the hypothesis that AD and PD can be differentiated by specific spatiotemporal patterns of local and distributed processes in the brain. The second aim tests the hypothesis that disease-specific alterations in brain network communication are detectable in prodromal forms of AD and PD and can be used to prevent disease progression and predict clinical outcome. The third aim identifies the underlying common and disease-specific biophysical substrates that lead to alterations in large-scale network dynamics. Importantly, here we identify the biophysical substrates that best predict an individual’s disease trajectory and clinical outcome. TVB is used to evaluate the clinical potential of therapeutic interventions early in development, thus helping to ensure that such efforts converge on targets that are most likely to have the best outcome.
Intensive efforts are underway to build large empirical neuroimaging datasets specific to AD and PD, yet we lack the framework to link these data with the brain function of individual patients. TheVirtualBrain addresses that need by providing a computational and theoretical framework for simulating whole-brain networks. We will use structural and functional patient data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Sydney Memory and Ageing Study (Sydney MAS), and the Parkinson’s Progression Markers Initiative (PPMI) to set the initial constraints for estimation of the model parameters.
The impact of our work has both direct and indirect effects on alleviation of human suffering, particularly for those afflicted with dementia. In this research, TVB acts as a “computational microscope” that allows for the inference of internal states and processes that are otherwise invisible to brain imaging devices. TVB is used to evaluate which biophysical model parameters best express the network alterations in AD and PD. Our project provides the basis for more deliberate integration of computational neuroscience and clinical approaches for diagnosis and treatment of brain disorders. The implications for developing targeted therapeutics are clear, where computational models based on a patient’s own data help to guide diagnoses and inform the choices of individualized interventions for the best chance of success. Using TVB as a means to characterize the biophysical parameters that differentiate dementia sub-types imparts great promise for improved early diagnosis and prognosis, as well as treatment success.
Grantee institution at the time of this grant: Baycrest Centre for Geriatric Care
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory mechanisms underlying endosomal targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD
Identifying Women-Specific and Men-Specific Risk Factors for Alzheimer’s Disease
Active Dates
July 01, 2022 - June 30, 2024
Principal Investigator
Gael Chetelat, PhD